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1. Introduction

The purpose of this article is to give a survey of some of the applications of
de Jong’s theorem on alterations [dJ]. Most of the applications fall into one of the
following two categories:

The first type of application deals with contravariant functors F from some
subcategory of the category of schemes to the category of Q-vector spaces with
extra structure (e.g. Galois action), which are equipped with a trace map for finite
étale morphisms. In a situation like this, for a given scheme X , F(X) will be a di-
rect summand of F(X ′) for an alteration X ′ of X . This allows to deduce properties
of F(X) for general X if one only knows the same property for smooth schemes.
The following are examples of this kind of application: The independence of l in
Grothendieck’s monodromy theorem, the p-adic monodromy theorem, finiteness of
rigid cohomology, and a (conditional) vanishing theorem for motivic cohomology.
All but the last application were already discussed by Berthelot in his Bourbaki
talk, and we follow his exposition.

The second type of application is more direct. There are certain Grothendieck
topologies which admit proper surjective maps as coverings. For such a topology,
de Jong’s theorem tells us that any variety is locally smooth. The two main exam-
ples we are giving here are Deligne’s topology of universal cohomological descent,
and the h-topology of Suslin and Voevodsky. In the first case, we get a general-
ization to characteristic p of Deligne’s theorem that any scheme admits a proper
hypercovering. In the second case, a theorem of Suslin and Voevodsky compar-
ing their singular cohomology of varieties to étale cohomology, and a theorem of
Suslin comparing Bloch’s higher Chow groups to étale cohomology, generalize to
characteristic p.

We must point out that none of the work presented here is original, and that
our exposition follows other papers closely in parts.

2. The Theorem, Serre’s conjecture

In this section, we explain notation, give de Jong’s theorem, and give as a
first application the proof of Serre’s conjecture on intersection multiplicities.

Let X be an integral Noetherian scheme. An alteration X ′ of X is an integral
scheme X ′ together with a proper dominant morphism ϕ : X ′ −→ X which is finite
over a non-empty open subset of X .
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There are two versions of de Jong’s theorem; the first one deals with varieties
over fields k, and the second one with varieties over complete discrete valuation
rings. We denote by k-variety an integral scheme which is separated and of finite
type over k.

Theorem 2.1. [dJ, Theorem 4.1] Let X be a variety over a field k and Z ⊆ X
a proper closed subset. Then there exists an alteration ϕ : X ′ −→ X and an open
immersion of X ′ into a regular, projective k-variety X̄ ′, such that the closed subset
ϕ−1(Z) ∪ (X̄ ′ −X ′) is the support of a strict normal crossing divisor on X̄ ′.

There is a finite extension k′ of k such that the structure morphism X̄ ′ −→ k
factors through k′ and that X̄ ′ is geometrically irreducible and smooth over k′. If
k is perfect, then X̄ ′ is smooth over k, and ϕ can be chosen generically étale.

Let S = Spec A be the spectrum of a complete discrete valuation ring A
with generic point η and closed point s. An S-variety is an integral scheme X ,
separated, flat and of finite type over S. Let X be an S-variety whose closed fiber
Xs has irreducible components Xi, i ∈ I . For J ⊆ I , let XJ = ∩j∈JXj . Then X is
strictly semi-stable over S, if

• Xη is smooth over k(η)
• Xs is reduced
• each Xi is a divisor on X
• for each J ⊆ I , XJ is smooth over k(s) of codimension #J in X .

Let (X, Z) be a pair consisting of an S-variety X together with a closed
subset Z ⊆ X , viewed as a reduced closed subscheme. Write Z = Zf ∪ Z ′, where
Zf −→ S is flat and Z ′ ⊆ Xs. Let Zi be the irreducible components of Zf , and
ZJ = ∩j∈JZj . The pair (X, Z) is a strictly semi-stable pair if

• X is strictly semi-stable over S
• Z is divisor with normal crossings on X
• for each J ⊆ I , ZJ is a union of strictly semi-stable S-varieties.

Theorem 2.2. [dJ, Theorem 6.5] Let X be an S-variety and Z ⊆ X a proper
closed subset containing the closed fiber. Then there exists a discrete valuation ring
A′, finite over A, a variety X ′ over S′ = Spec A′, an alteration ϕ : X ′ −→ X over
S, and an open immersion j : X ′ −→ X̄ ′ of S′-varieties, such that X̄ ′ is projective
over S′ with geometrically irreducible generic fiber, and (X̄ ′, ϕ−1(Z)red∪(X̄ ′−X ′))
is a strictly semi-stable pair.

2.1. Serre’s conjecture. The first application we give concerns intersection mul-
tiplicities, see [R2] for an overview. We give it here because it does not fit into one
of the other categories mentioned in the introduction.

Let A be a regular local ring of finite Krull dimension with maximal ideal
m and residue field k. Let M and N be two finitely generated A-modules such
that M ⊗A N is of finite length. This implies dimA M + dimA N ≤ dim A, where
dimA M is the Krull dimension of the ring A/ AnnA(M). Geometrically, if M and
N are ideals of A defining subvarieties, one would like to define the multiplicity
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of intersection of these subvarieties in the point given by the maximal ideal of A.
Of course, one wants this multiplicity to be non-negative, and to be zero if the
subvarieties do not meet. Serre [Se] proposed to define the intersection multiplicity
of M and N as

χA(M, N) =
∑

i≥0

(−1)i lgA TorA
i (M, N),

and conjectured the following properties:

Theorem 2.3. Under the above assumptions, we have

Positivity: χA(M, N) ≥ 0
Annihilation: χA(M, N) = 0 if dimA M + dimA N < dim A

Serre proved this for A of equal characteristic, and for A of unequal charac-
teristic and non-ramified. The annihilation conjecture was proved by Gillet-Soulé
[GS] and Roberts [R1]. Finally, using de Jong’s theorem, Gabber [GA] proved the
positivity conjecture, see [B1] for more details.

3. Grothendieck topologies for which alterations are coverings

In this section, we give some applications which use Grothendieck topologies
admitting proper surjective maps as coverings. De Jong’s theorem implies that
every variety is locally smooth for such a topology.

3.1. Proper hypercoverings. (see Deligne [D, Section 5]) Let ∆ be the category
with objects finite ordered sets [n] := {0, . . . , n} and morphisms maps respecting
the ordering; let ∆t be the full subcategory of sets [n] with n ≤ t. Recall that a
simplicial object (respectively a t-truncated simplicial object) in the category C is
a contravariant functor U

�
: ∆ −→ C (respectively U

�
: ∆t −→ C). One usually writes

Xn for X
�
([n]). The restriction functor skt (t-skeleton) from simplicial objects to

t-truncated simplicial objects has a right adjoint functor coskt (t-coskeleton) such
that skt = skt coskt skt. The notion of a simplicial scheme generalizes the notion
of a scheme by taking Xn = X for all n, and all simplicial maps the identity.

A sheaf F � on a simplicial topological space X
�

is a family of sheaves Fn

on Xn together with morphisms of sheaves on Xm, f∗Fn −→ Fm, for each map
f : [n] −→ [m] satisfying obvious compatibilities. A sheaf on X

�
can be viewed as a

functor on pairs (n, U) with U ⊆ Xn, satisfying certain compatibility conditions.
In particular, the sheaves on X

�
can be viewed as the category of sheaves on a site.

The global sections of the sheaf F � are

Γ(X
�
,F �) = ker

(

Γ(X0,F
0) −→ Γ(X1,F

1)
)

,

where the map is the difference of the maps induced by the two maps ∂0, ∂1 from
[0] to [1]. Let H i(X

�
,F �) be the ith derived functor of the global section functor.

Looking at an acyclic resolution (for example the Godement resolution), one sees
that there is a spectral sequence

Epq
1 = Hq(Xp,F

p)⇒ Hp+q(X
�
,F �).
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Let a : X
�
−→ S be an augmented simplicial scheme, i.e. a simplicial scheme

together with a map X0 −→ S. This induces a (unique) map an : Xn −→ S for each
n, and a functor a∗ from sheaves on S to sheaves on X

�
, sending F to the sheaf

a∗
nF on Xn. The functor a∗ has a left adjoint a∗, explicitly,

a∗F
� = ker

(

a0∗F
0 ∂∗

0−∂∗

1−−−−→ a1∗F
1
)

.

This can be derived to give a functor

Ra∗ : D+(X
�
) −→ D+(S)

from the derived category of bounded above complexes of sheaves of abelian groups
on X

�
to the corresponding category on S. Let ϕ : id −→ Ra∗a

∗ be the associated
adjunction morphism. Then a is said to be of cohomological descent if ϕ is an
isomorphism. Since Γ(X

�
,F �) = Γ(S, Ra∗F

�) for any sheaf on X
�
, cohomological

descent implies

H i(S,F) ∼= H i(S, Ra∗a
∗F) ∼= H i(X

�
, a∗F ·),

and the spectral sequence above reads

Ep,q
1 = Hq(Xp, a

∗
pF)⇒ Hp+q(S,F).

If we can find for a given S an a : X
�
−→ S of cohomological descent such

that all the schemes Xn are smooth, then this formalism allows us to study the
cohomology groups of singular schemes in terms of the cohomology groups of
smooth schemes.

We have the following basic example of morphisms of cohomological descent
[SGA 4, V bis]: A t-truncated simplicial scheme X

�
is called a t-truncated proper

hypercovering if the adjoint maps

ϕn+1 : Xn+1 −→ (coskn skn X
�
)n+1 (1)

are proper and surjective for all n ≤ t−1. In this case, the map coskt X
�
−→ S is of

cohomological descent. This construction is used to prove the following theorem:

Theorem 3.1. Let S be a variety over a perfect field k. Then there exists a sim-
plicial scheme X̄

�
, projective and smooth over k, a strict normal crossing divisor

D
�
in X̄

�
with open complement X

�
= X̄

�
−D

�
, and an augmentation a : X

�
−→ S

which is a proper hypercovering of S.

For the proof one constructs inductively, using de Jong’s theorem, t-truncated
simplicial schemes tX�

over S with compactification tX̄�
, such that tX�

satisfies the
condition (1). The limit of these t-truncated schemes then satisfies the statement
of the theorem, see Deligne’s [D, 6.2.5].

3.2. Singular cohomology of varieties. Suslin and Voevodsky define in [SV]

singular homology Hsing
∗ (X, A) and cohomology groups H∗

sing(X, A) for any scheme

X of finite type over a field k, and any abelian group A. For k = C, and A = Z/n,
these groups generalize the usual singular homology groups. We give a short outline
of the construction, see Levine [L2] for another survey.
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Let F be a presheaf of abelian groups on Sch/k, the category of schemes of
finite type over a field k of exponential characteristic p. We define presheaves Fq

by

Fq(X) := F(X ×∆q). (2)

Here
∆q = Spec k[t0, . . . , tq ]/(

∑

ti = 1)

is the algebraic q-simplex. As in topology, ∆
�
is a cosimplicial scheme, hence every

presheaf F on Sch/k gives rise to a simplicial presheaf F
�
on Sch/k via (2). By the

Dold-Kan equivalence, this corresponds to a complex of presheaves F∗ on Sch/k.
We let

C∗(F) = F∗(k)

be the global sections over k of this complex of presheaves. Note that in order to
define C∗(F), we only need to know the values of F on the algebraic q-simplices,
for example it suffices for F to be defined on smooth schemes over k.

Let c0(X) and z0(X) be the presheaf which associates to every smooth con-
nected k-scheme S the free abelian group generated by the closed integral sub-
schemes Z ⊆ X ×S which are finite and surjective over S and quasi-finite over S,
respectively. Note that if X is proper, then c0(X) = z0(X). For an abelian group
A one defines

Hsing
∗ (X, A) = TorAb

∗ (C∗(c0(X)), A),

H∗
sing(X, A) = Ext∗Ab(C∗(c0(X)), A).

This generalizes singular (co)homology; for X a scheme of finite type over C, one
has the following natural isomorphisms [SV, Theorem 8.3]:

Hsing
∗ (X, Z/m)

∼
−→ H∗(X(C), Z/m)

H∗
sing(X, Z/m)

∼
←− H∗(X(C), Z/m).

The right hand side is the ordinary (co)homology of the C-valued points of X .
Suslin and Voevodsky also show that for X separated of finite type over an

algebraically closed field of characteristic 0, their singular cohomology groups agree
with étale cohomology groups. Using de Jong’s theorem on alterations, one can
show that the last hypothesis is spurious:

Theorem 3.2. [SV, Corollary 7.8] Let X be a separated scheme of finite type over
an algebraically closed field k, and let m be prime to the characteristic of k. Then

H∗
sing(X, Z/m) ∼= H∗

ét(X, Z/m).

The rest of this subsection is devoted to give a sketch of this theorem. We
introduce a Grothendieck topology on Sch/k, the h-topology. An h-cover of a
scheme X is a finite family of morphisms of finite type {pi : Xi −→ X} such that
the map

∐

Xi −→ X is a universal topological epimorphism. The h-topology is the
Grothendieck topology generated by all h-coverings. The h-topology is finer than
the étale topology. In our context it is important to note that an alteration is an
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h-covering; in particular every separated and integral scheme of finite type over k
is locally smooth for the h-topology by theorem 2.1. For any presheaf F on Sch/k
we denote the associated sheaf for the h-topology by Fh.

We use a collection of theorems in [SV] to express étale cohomology in terms
of the h-topology: The presheaf c0(X) can be extended to a presheaf on normal
integral schemes with the same definition on objects; however one has to invert the
characteristic of k for functoriality [SV, Section 5]. This presheaf can be further
extended to a presheaf on all schemes of finite type over k [SV, Section 6], which
we will again denote by c0(X). The analogous statements for z0(X) hold.

By [SV, Theorem 6.7], after inverting the characteristic of k, the h-sheaf
c0(X)h is isomorphic to the free sheaf Z(X)h generated by X , i.e. the sheaf as-
sociated to the presheaf which sends U to the free abelian group generated by
Hom(U, X). This implies the following

Lemma 3.3. Let X be a separated scheme over k and m prime to the character-
istic of k. Then we have isomorphisms

Ext∗h(c0(X)h, Z/m) ∼= H∗
ét(X, Z/m)

Ext∗h(z0(X)h, Z/m) ∼= H∗
ét,c(X, Z/m).

Proof. For an étale sheaf F , we get by comparing to an intermediate Grothendieck
topology, the qfh-topology, the isomorphisms [SV, Corollary 10.10]

Ext∗ét(F , Z/m) ∼= Ext∗qfh(Fqfh, Z/m) ∼= Ext∗h(Fh, Z/m).

Hence we have

Ext∗h(c0(X)h, Z/m) ∼= Ext∗h(Z(X)h, Z/m) ∼= Ext∗ét(Z(X), Z/m) ∼= H∗
ét(X, Z/m).

To prove the second isomorphism, we choose an open embedding j : X −→ X̄ into
a complete separated scheme X̄ . Let i : Y −→ X̄ be the closed embedding of the
complement. There is an exact sequence of h-sheaves [Su]:

0 −→ z0(Y )h
i∗−→ z0(X)h

j∗

−→ z0(U)h −→ 0. (3)

Comparing the associated long exact Ext∗h(−, Z/m)-sequence to the long exact
Gysin sequence for étale cohomology with compact supports, the second statement
follows from the first. 	

To apply the following theorem, we need another definition. A presheaf F
is a homotopy invariant presheaf with transfers if the projection induces an iso-
morphism F(X)

∼
−→ F(X ×A1), and if every element of c0(X)(Y ) induces a map

F(X) −→ F(Y ). As an example, any sheaf for the qfh-topology can be equipped
with transfers [SV, Section 6]. On the other hand, taking the homology groups of
the complex F∗ is a functorial way of making F homotopy invariant [SV, Corol-
lary 7.5]. In particular, for any qfh-sheaf the homology presheaves Hq(F∗) are
homotopy invariant presheaves with transfers.
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Theorem 3.4. (Rigidity Theorem [SV, Theorem 4.5]) Let k be an algebraically
closed field, F a homotopy invariant presheaf with transfers on Sch/k, and let m
be prime to the characteristic of k. Then there are canonical isomorphisms

Ext∗h(Fh, Z/m) ∼= Ext∗Ab(F(k), Z/m).

Sketch of proof: Let F0 be the constant presheaf F(Spec k). Let F ′ be the cokernel
of the natural map F0 −→ F , which is an inclusion because k is algebraically closed,
hence every scheme of finite type has a k-rational point.

An explicit calculation [SV, Theorem 4.4] shows that for a homotopy invariant
m-torsion presheaf with transfer G, and Xh

x the henselization of the smooth scheme
X at a closed point x, G(Xh

x ) ∼= G(k). Since alterations and étale covers are h-
covers, every scheme is locally smooth for the h-topology by theorem 2.1.

Applying this to the presheaves F ′/m and mF
′ (cokernel and kernel of multi-

plication by m of F ′), which are again homotopy invariant presheaves with trans-
fers, we see that F ′

h is uniquely m-divisible, hence the natural map (F0)h −→ Fh

induces the isomorphism of the theorem, noting

Ext∗h(((F0)h, Z/m) ∼= Ext∗Ab(F(k), Z/m).

	

Corollary 3.5. For any homotopy invariant presheaf with transfers F we have

Ext∗h(Fh, Z/m) ∼= Ext∗h((F∗)h, Z/m) ∼= Ext∗Ab(C∗(F), Z/m).

Sketch of proof: To prove the first isomorphism, one uses the first hypercohomology
spectral sequence

Epq
1 = Extq

h((Fp)h, Z/m)⇒ Extp+q
h ((F∗)h, Z/m),

where (F∗)h is the sheafification of the simplicial presheaf F∗ on Sch/k. This spec-
tral sequence collapses at E2 to the isomorphism Extq

h(Fh, Z/m) ∼= Extq
h((F∗)h, Z/m),

[SV, Corollary 7.3].
To prove the second isomorphism, Suslin and Voevodsky employ the second

hypercohomology spectral sequence

Epq
2 = Extp

h(Hq((F∗)h), Z/m)⇒ Extp+q
h ((F∗)h, Z/m).

Since sheafification is exact, Hq((F∗)h) ∼= Hq(F∗)h, and by definition Hq(F∗)(k) =
Hq(F∗(k)) = Hq(C∗(F)). The rigidity theorem now shows that

Ext∗h(Hq((F∗)h), Z/m) ∼= Ext∗h(Hq(F∗)h, Z/m)

∼= Ext∗Ab(Hq(F∗)(k), Z/m) ∼= Ext∗Ab(Hq(C∗(F)), Z/m).

Hence the natural map induced by taking the associated constant sheaf from the
spectral sequence

Epq
2 = Extp

Ab(Hq(C∗(F)), Z/m)⇒ Extp+q
Ab (C∗(F), Z/m)

is an isomorphism on E2-terms, and gives an isomorphism of the abutments. 	
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To finish the proof of Theorem 3.2, we apply the Corollary to F = c0(X),
noting that the presheaf c0(X) is actually a qfh-sheaf, hence admits transfers. We
get

H∗
sing(X, Z/m) = Ext∗Ab(C∗(c0(X)), Z/m) ∼= Ext∗h(c0(X)h, Z/m),

and conclude with Lemma 3.3.

3.3. Higher Chow groups and étale cohomology. Let zi(X,−) be Bloch’s
cycle complex, i.e. zi(X, n) is the free abelian group generated by the closed irre-
ducible subschemes of codimension i of X ×∆n

k which intersect all faces properly;
see [Bl] for the basic properties. Then for an abelian group A, higher Chow groups
with A-coefficients are defined as

CHi(X, n, A) = Hn(zi(X,−)⊗A). (4)

Suslin proves in [Su] that for an equidimensional scheme over an algebraically
closed field k of characteristic 0, higher Chow groups are dual to étale cohomology
with compact support. Again, the hypothesis that the base field has characteristic
0 is spurious:

Theorem 3.6. Let X be an equidimensional quasi-projective scheme over an al-
gebraically closed field k, and let i ≥ d = dim X. Then for any m prime to the
characteristic of k,

CHi(X, n, Z/m) ∼= H
2(d−i)+n

ét,c (X, Z/m(d− i))∨.

In particular, if X is smooth, we have

CHi(X, n, Z/m) ∼= H2i−n
ét (X, Z/m(i)).

Proof. Suslin shows that for X an affine equidimensional scheme of dimension d,
the canonical injection of complexes

C∗(z0(X)) −→ zd(X,−)

is a quasi-isomorphism [Su, Theorem 2.1]. We show how one can get the general
statement from this. We proceed by induction on the dimension of X . For a quasi-
projective scheme X , one can find an effective Cartier divisor Y ⊂ X such that
the open complement U is affine.

It follows from Corollary 3.5 that we have for a complex of presheaves F �

H∗(C∗(F
�)⊗L Z/m)∨ ∼= H∗(R Hom(C∗(F

�), Z/m))

= Ext∗Ab(C∗(F
�), Z/m) ∼= Ext∗h(F �

h, Z/m).

In particular, the complex C∗(F
�)⊗L Z/m is acyclic if the complex of sheaves F �

h

is exact. Applying this to the exact sequence (3), we get the upper short exact
sequence in the following commutative diagram of complexes of abelian groups

C∗(z0(Y ))⊗L Z/m −−−−→ C∗(z0(X))⊗L Z/m −−−−→ C∗(z0(U))⊗L Z/m




y





y





y

zd−1(Y,−)⊗L Z/m −−−−→ zd(X,−)⊗L Z/m −−−−→ zd(U,−)⊗L Z/m.
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The lower row is an exact triangle in the derived category by [Bl]. Since the outer
vertical maps are quasi-isomorphisms by induction and the affine case, the same
holds for the middle vertical map.

The theorem follows now for i = d because by Lemma 3.3 and Corollary 3.5

CHd(X, n, Z/m) = Hn(zd(X,−)⊗L Z/m) ∼= Hn(C∗(z0(X))⊗L Z/m)

∼= Extn
Ab(C∗(z0(X)), Z/m)∨ ∼= Extn

h(z0(X)h, Z/m)∨ ∼= Hn
ét,c(X, Z/m)∨.

The general case can be derived by applying this to X×Ai−d, and using homotopy
invariance. 	

4. Applications using trace maps

There are two main mechanisms how de Jong’s theorem is used to prove
properties of cohomology groups. Since the mechanism of the proof is the most
important point and has to be adapted to the specific situation, we are somewhat
vague in the formulation:

Lemma 4.1. Let P be a property of cohomology groups of varieties over finite
extensions of a perfect field K. Suppose that P is

1. preserved by extensions
2. holds for the cohomology of smooth projective varieties

Assume that the cohomology theory

1. has a long exact localization sequence
2. has trace maps for finite étale maps

Then P holds for the cohomology groups of all varieties.

Proof. Using the localization sequence and induction, one sees that it is equivalent
to prove property P for the cohomology of a scheme X or of some open subscheme
U of X . On the other hand, we can use Theorem 2.1 to show that for a given
X , there is an X ′, an alteration ϕ : X ′ −→ X and an open embedding of X ′

into a smooth projective scheme X̄ ′. Let U be a sufficiently small smooth open
subscheme of X , then the morphism U ′ = U ×X X ′ −→ U is a finite map between
smooth schemes. Using the trace map, we see that the cohomology of U is a direct
summand of the cohomology of U ′. Since P holds for the cohomology of X̄ ′, using
the localization sequence it holds for the cohomology of U ′, hence for U and finally
for X . 	

Lemma 4.2. Let P be a property of cohomology groups of varieties over finite
extensions of the field of fractions K of a Henselian discrete valuation ring A.
Suppose that property P

1. holds for the cohomology groups of the generic fibers of semi-stable schemes
over A

2. is inherited by direct summands of cohomology groups

Suppose that the cohomology theory admits a trace map for finite étale maps. Then
property P holds for all cohomology groups of smooth and proper varieties over K.
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Proof. Let X be a scheme which is smooth and proper over K. By Theorem 2.2 we
can find a finite extension K ′ of K, a strictly semi-stable scheme X ′ over the ring
of integers of K ′ with generic fiber X ′, and a K-alteration ϕ : X ′ −→ X . Property
P holds for X ′ by hypothesis, and the cohomology group of X is a direct summand
of the cohomology group of X ′ using the trace map. 	

The following examples use these two methods with only minor modifications.
The first two examples were discussed by Berthelot in [B1].

4.1. Monodromy, l 6= p. Let A be a Henselian discrete valuation ring with field
of fractions K, and X be a K-scheme of finite type. Let K̄ be the algebraic closure
of K, XK̄ = X ×K K̄, and denote by I ⊆ G = Gal(K̄/K) the inertia subgroup
of the Galois group. We fix a prime l different from the characteristic of K. Then
the étale cohomology groups H i

ét(XK̄ , Ql) and the étale cohomology groups with
compact support H i

ét,c(XK̄ , Ql) are equipped with an action of the Galois group
G, giving an l-adic representation of I .

If l is also different from the residue characteristic of A, then the monodromy
theorem of Grothendieck [SGA 7, Th. 2.2] states that the l-adic representation
H i

ét(XK̄ , Ql) of I is quasi-unipotent, i.e. there is a subgroup of finite index I ′ ⊆ I
such that g − id acts nilpotently for each g ∈ I ′. It has been observed by Deligne
that de Jong’s theorem implies that such an I ′ can be chosen independently of l:

Theorem 4.3. There exists a subgroup I ′ ⊆ I of finite index such that the action
of I ′ on H i

ét(XK̄ , Ql) and on H i
ét,c(XK̄ , Ql) is unipotent for each l 6= p.

Sketch of proof:(see Berthelot [B1]) If X is the generic fiber of a semi-stable scheme,
then the action of I is seen to be unipotent by using the vanishing cycle spectral
sequence. Using the method of Lemma 4.2, we see that, after a finite extension
of K (which amounts to replacing I by a subgroup of finite index), the theorem
holds for all smooth and proper schemes over K.

If X is separated and of finite type over K, one can use the method of
Lemma 4.1 to show that the cohomology with compact support H i

ét,c(XK̄ , Ql) has
the property of the theorem. For X smooth and separated over K, the statement
about H i

ét(XK̄ , Ql) follows from the previous case by Poincaré duality.
In the general case one uses the spectral sequence for a Cech-covering to

reduce to the case X affine, and then reduces to the case X integral. We can apply

Theorem 3.1 to construct a proper hypercovering X ′
�

ϕ
−→ X such that all Xi are

smooth and such that the adjunction map Ql,X −→ Rϕ∗Ql,X′

�

is an isomorphism.
The hypercohomology spectral sequence and the result for H t

ét(X
′
s,K̄

, Ql) proves

the result for H i
ét(XK̄ , Ql). 	

4.2. Monodromy, l = p. The above techniques can also be used to study the
p-adic representations H∗

ét(XK̄ , Qp) if K is of characteristic 0 with residue char-
acteristic p. For simplicity we assume that K is a finite extension of Qp. Let K0

be the maximal unramified subextension of K, with Frobenius endomorphism σ,
and let G be the absolute Galois group of K.
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Let us recall some basic properties of Fontaine’s rings [Fo]

Bcrys ⊆ Bst ⊆ BdR; BHT .

These rings carry a structure of a G-module, and for the invariants one has

BG
HT
∼= BG

dR
∼= K;

BG
crys
∼= BG

st
∼= K0.

The ring BdR is a complete discrete valuation field with residue field K̄∧, the
completion of the algebraic closure of K. The algebra BHT is the graded algebra
associated to the filtration given by the valuation of BdR, and

BHT = grBdR =
⊕

i∈Z

K̄∧(i).

The K0-algebra Bcrys is equipped with a σ-semilinear automorphism ϕ, and a G-
equivariant injective homomorphism Bcrys⊗K0K −→ BdR which induces a filtration
on Bcrys ⊗K0 K. The associated map of graded algebras is an isomorphism.

Finally, Bst is a G-invariant polynomial extension in one variable u of Bcrys

inside BdR; we extend ϕ to Bst by setting ϕ(u) = pu. The monodromy operator
N : Bst −→ Bst is the unique Bcrys-derivation such that Nu = 1; it follows that
Nϕ = pϕN and we can recover Bcrys as the kernel of N . The natural injection
Bst ⊗K0 K −→ BdR induces a filtration on Bst ⊗K0 K, and u ∈ Fil1.

For a p-adic representation E of G = Gal(K̄/K) and ∗ one of the symbols
crys, st, dR and HT , Fontaine defines

D∗(E) = (B∗ ⊗Qp
E)G.

Then E is said to be crystalline, semi-stable, de Rham or Hodge-Tate, if the
canonical injection

α∗ : B∗ ⊗BG
∗

D∗(E) −→ B∗ ⊗Qp
E (5)

is an isomorphism, for ∗ the corresponding symbol. It is easy to see the following
implications:

crystalline⇒ semi-stable⇒ de Rham⇒ Hodge-Tate.

Of special interest is the case of the representation H∗
ét(XK̄ , Qp), in this case

D∗(H
∗
ét(XK̄ , Qp)) can sometimes be identified with other cohomology theories, so

that by (5) this cohomology theory and étale cohomology determine each other.
The following conjectures of Fontaine have been proved by Faltings [Fa] and

Tsuji [T1] based on the work of a number of people (Fontaine, Hyodo, Kato,
Messing. . . ).

1. (Faltings) Let X be smooth and proper over K. Let H∗
dR(X/K) be the

de Rham cohomology of X , equipped with its Hodge filtration. Then the
representation H∗

ét(XK̄ , Qp) is de Rham, and

BdR ⊗K H∗
DR(X/K) ∼= BdR ⊗Qp

H∗
ét(XK̄ , Qp),

as filtered Galois-modules.
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2. (Tsuji) Let X be the generic fiber of a proper, semi-stable scheme over A.
Let H∗

st(X/W (k)) be the logarithmic crystalline cohomology of Hyodo and
Kato, equipped with a σ-linear endomorphism ϕ and a monodromy operator
N satisfying Nϕ = pϕN . After extending scalars to K, it is isomorphic to de
Rham cohomology, hence inherits the Hodge filtration. Then H∗

ét(XK̄ , Qp)
is semi-stable and

Bst ⊗W (k) H∗
st(X/W (k)) ∼= Bst ⊗Qp

H∗
ét(XK̄ , Qp),

compatible with Galois action, σ-semilinear endomorphism, monodromy op-
erator, and filtration after extension of scalars to K.

Note that if X is the generic fiber of a smooth and proper scheme X over A, then
logarithmic crystalline cohomology agrees with the usual crystalline cohomology,
and the monodromy operator N is zero. In this situation, the above result has
been proved by Faltings, and yields that H∗

ét(XK̄ , Qp) is crystalline, and

Bcrys ⊗W (k) H∗
crys(X/W (k)) ∼= Bcrys ⊗Qp

H∗
ét(XK̄ , Qp),

as Galois modules with σ-semilinear endomorphism and filtration after extending
scalars to K.

A representation E is called potentially semi-stable, if its restriction to an
open subgroup of finite index of the Galois group is semi-stable. This is the closest
analogy to the monodromy theorem of Grothendieck in the p-adic situation. Ob-
viously, semi-stable representations are potentially semi-stable, and one can show
that potentially semi-stable representations are de Rham. Using de Jong’s and
Tsuji’s theorem, we get the following strengthening and alternate proof of (1):

Proposition 4.4. For a smooth and proper scheme X over K, H∗
ét(XK̄ , Qp) is

potentially semi-stable.

Sketch of proof: By Tsuji’s theorem, the theorem holds for the generic fiber of a
proper semi-stable scheme. Since a subrepresentation of a semi-stable representa-
tion is again semi-stable, we see using the method of Lemma 4.2 that H∗

ét(XK̄ , Qp)
is semi-stable as a Gal(K̄/K ′)-module, hence potentially semi-stable as a Gal(K̄/K)-
module. 	

Note that extensions of semi-stable representations need not be semi-stable,
so that Lemma 4.1 does not apply to prove Proposition 4.4 for all K-varieties X .
However, in a recent paper Tsuji uses proper hypercoverings to extend his method
to prove the following generalization:

Theorem 4.5. [T2, Corollary 2.2.3] Let X be a proper scheme over K. Then
H∗

ét(XK̄ , Qp) is potentially semi-stable.

4.3. Finiteness of rigid cohomology. Let k be a field of characteristic p > 0,
W a Cohen-ring for k, and K its field of fractions. For a smooth, affine scheme
X over k, Monsky and Washnitzer defined the cohomology H∗

MW (X/K), which
is a K-vector space. Not much is known about these groups. On the other hand,
for X smooth and proper over k, Grothendieck defined crystalline cohomology
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groups H∗
crys(X/W ), which are finitely generated W -modules. De Jong’s theorem

allows to prove finite generation of H∗
MW (X/K), starting from the corresponding

statement for crystalline cohomology.
The bridge between the two theories is Berthelot’s rigid cohomology. We refer

the reader to his paper [B2] for a proper definition of H∗
rig(X/K) for X a separated

scheme of finite type over k, and rigid cohomology with support H∗
Z,rig(X/K) for

Z a closed subscheme of X . We will only need the following properties:

Trace: If X ′ is étale over X , then there exists a trace map H∗
MW (X ′/K) −→

H∗
MW (X/K).

Proper: If X is proper and smooth over k, then there is an isomorphism

H∗
rig(X/K)

∼
−→ H∗

crys(X/W )⊗W K.

Affine: If X is affine and smooth over k, then there is an isomorphism

H∗
rig(X/K)

∼
−→ H∗

MW (X/K).

Gysin: Let Y −→ X be a closed immersion of codimension r between two
smooth schemes over k which can be lifted to characteristic 0. If Z a closed
subscheme of Y then there exists a Gysin isomorphism

H∗
Z,rig(Y/K)

∼
−→ H∗+2r

Z,rig (X/K).

Excision: For T ⊆ Z ⊆ X , there is a long exact sequence

. . . −→ H i
T,rig(X/K) −→ H i

Z,rig(X/K) −→ H i
Z−T,rig(X − T/K) −→ . . . .

Theorem 4.6. (Berthelot, [B2, Théorème 3.1]) Let X be a smooth, separated
scheme over k and Z ⊆ X a closed subscheme. Then the groups H∗

Z,rig(X/K) are
finite dimensional K-vector spaces. In particular, if X is a smooth affine scheme
over k, the groups H∗

MW (X/K) are finite dimensional K-vector spaces.

Sketch of proof:(see Berthelot [B1]) The proof is an induction over n on the follow-
ing two assertions for each field k of characteristic p and all smooth and separated
schemes X over k:

(a)n: H∗
rig(X/K) is finite dimensional for X of dimension at most n.

(b)n: H∗
Z,rig(X/K) is finite dimensional for each closed subscheme Z of dimen-

sion at most n.

To prove (a)n from (bn−1) one applies the method of Lemma 4.1. The statement
follows for smooth and proper schemes by comparison to crystalline cohomology.
To get a trace map, one finds an alteration over the algebraic closure of the base
field (which is then generically étale), and observes that this alteration is already
defined over a finite extension of the base field. The proof of (bn) from (an) does
not require de Jong’s theorem, so we omit it. 	
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4.4. Rational motivic cohomology in characteristic p. We give an example
of how de Jong’s theorem can be used to study motivic cohomology of fields and
varieties in characteristic p. For X a smooth variety over a field k, define motivic
cohomology with coefficients in an abelian group A to be Bloch’s higher Chow
groups (4):

H i(X, A(n)) = CHn(X, 2n− i, A).

By [L1], rationally motivic cohomology agrees with the weight n-part of the alge-

braic K-theory of X : H i(X, Q(n)) ∼= K2n−i(X)
(n)
Q . A conjecture of Parshin states

that if X is smooth and projective over a finite field, then H i(X, Q(n)) = 0 un-
less i = 2n. This is motivated by the idea that motivic cohomology should be
the Ext-groups in a category of mixed motives, and that the category of mixed
motives over a finite field should be semi-simple, hence the Ext-groups vanish.
In order to convince algebraic geometers of the validity of Parshin’s conjecture,
we note that it is a consequence of Tate’s conjecture on algebraic cycles and the
conjecture that rational and numerical equivalence agrees for smooth, projective
varieties over finite fields up to torsion [Ge, Theorem 3.3].

Using de Jong’s theorem, we can show that Parshin’s conjecture determines
rational motivic cohomology of fields and of smooth varieties in characteristic p:

Theorem 4.7. Let k be a field of characteristic p > 0 of transcendence degree e
(possibly infinite) over Fp. Assume Parshin’s conjecture and let X be a variety of
dimension d over k. Then
i) H i(k, Q(n)) = 0 unless i = n ≤ e.
ii) H i(X, Q(n)) = 0 unless n ≤ i ≤ min{n + d, e + d}.

Proof. i) [Ge, Theorem 3.4] It follows from the definition that H i(k, Q(n)) = 0
for i > n. By induction, we can assume that if n′ < n, then for any field k
of characteristic p, H i(k, Q(n′)) = 0 for i 6= n′ and for n′ > e. Since motivic
cohomology commutes with direct limits, we can assume that e is finite. By de
Jong, we can find a smooth projective variety X over Fp such that the function
field k(X) of X is a finite extension of k. Since the composition of the inclusion and
transfer map H i(k, Q(n)) −→ H i(k(X), Q(n)) −→ H i(k, Q(n)) is multiplication by
the degree of the extension, we can assume k = k(X). Now consider the coniveau
spectral sequence for motivic cohomology [Bl]

Es,t
1 =

⊕

x∈X(s)

Ht−s(k(x), Q(n− s))⇒ Hs+t(X, Q(n)).

We have H i(k, Q(n)) = E0,i
1 , and the differentials leaving E0,i

r end in Er,i−r+1
r ,

which is a subquotient of a sum of groups H i+1−2r(k(x), Q(n − r)) for various
fields k(x) of transcendence degree e − r. If i < n, then i + 1 − 2r < n − r, and
if n > e, then e− r > n− r. Hence, by induction all differentials leaving E0,i

r are
zero and H i(k, Q(n)) = E0,i

∞ . This is a quotient of H i(X, Q(n)), which is trivial
by Parshin’s conjecture.
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ii) [Ge, Corollary 3.5] The bound i ≤ n + d follows from the definition of
higher Chow groups. For the other bounds, we use the coniveau spectral sequence
and note that by (i) the E1-terms vanish outside the specified bounds. 	
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